Sains Malaysiana 54(12)(2025): 2873-2886

http://doi.org/10.17576/jsm-2025-5412-06

 

Pengaktifan Peroksimonosulfat secara Heterogen oleh MCM-41 Terdop Kobalt untuk Penyingkiran Fluorokuinolon

(Heterogeneous Activation of Peroxymonosulfate by Cobalt-Doped MCM-41 for Removal of Fluoroquinolones)

 

GANAPATY MANICKAVASAGAM, NURSYAZLIN SUDA & WEN-DA OH*

 

Pusat Pengajian Sains Kimia, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Received: 24 July 2025/Accepted: 11 December 2025

 

Abstrak

Abu sekam padi yang terhasil daripada sekam padi lazimnya mempunyai ketumpatan pukal yang rendah serta menimbulkan cabaran dari segi alam sekitar dan kesihatan manusia, khususnya disebabkan kesukaran untuk dilupuskan dengan selamat. Kandungan silika amorfus yang tinggi dalam abu ini menjadikannya bahan yang sangat sesuai untuk pelbagai kegunaan dalam bidang perindustrian seperti komposit polimer, pembuatan kaca, seramik dan cat serta dalam teknologi moden seperti sistem penghantaran ubat, penjerapan karbon dan penyimpanan tenaga. Dalam penyelidikan ini, bahan berstruktur mesopori yang dikenali sebagai Mobil Composition of Matter No. 41 (MCM-41) telah disintesis dengan menggunakan sekam padi sebagai sumber utama silika untuk pengaktifan peroksimonosulfat (PMS) bagi penyingkiran gatifloksasin (GAT). Seterusnya, pendopan Co dalam struktur MCM-41 dilaksanakan melalui gabungan kaedah impregnasi dan kalsinasi. Pemangkin yang dihasilkan (MCM, Co-MCM-1, Co-MCM-2 dan Co-MCM-4) telah dikaji cirinya menggunakan mikroskopi elektron pengimbasan-pancaran resolusi tinggi (FESEM), transformasi Fourier inframerah spektroskopi (FTIR), difraktometer sinar-X (XRD) dan gravimetri terma (TGA). Kajian mendapati Co-MCM-4 menunjukkan keberkesanan tertinggi dalam penyingkiran GAT dengan kadar 0.0059 min-1. Kecekapan penyingkiran ini meningkat pada keadaan optimum, iaitu pemuatan pemangkin sebanyak 0.25 g L-1 (0.0127 min-1), dos PMS sebanyak 0.90 g L-1 (0.0207 min-1), dan nilai pH 9 (0.0265 min-1). Selain itu, Co-MCM-4 turut menunjukkan keupayaan guna semula yang baik dengan kecekapan penyingkiran GAT melebihi 60% selepas empat kitaran. Ujian perencat radikal menunjukkan SO4 •− dan OH berperanan secara langsung dalam proses penyingkiran GAT. Secara keseluruhannya, kajian ini membuktikan potensi tinggi Co-MCM-4 yang dihasilkan daripada bahan buangan untuk digunakan sebagai pemangkin dalam pengaktifan PMS dan penyingkiran antibiotik secara mampan.

Kata kunci: Gatifloksasin; laluan radikal; MCM-41 terdop Co; pengaktifan peroksimonosulfat; sekam padi

 

Abstract

Rice husk is an abundant agricultural by-product in major rice-producing countries. The resulting rice husk ash is characterized by low bulk density, presenting significant environmental and health concerns due to challenges associated with its disposal. The high content of amorphous silica in rice husk ash renders it a highly suitable material for a wide range of industrial applications (e.g., polymer composites, glassmaking, ceramics, paints) and emerging technological fields (e.g., drug delivery systems, carbon capture, and energy storage). In this study, Mobil Composition of Matter No. 41 (MCM-41) was synthesized from rice husk as a silica source and Co doping was achieved through a combination of impregnation and subsequent calcination techniques to activate peroxymonosulfate (PMS) for gatifloxacin (GAT) removal. The resultant catalysts (MCM, Co-MCM-1, Co-MCM-2, and Co-MCM-4) were characterized using a field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR), X-ray Diffraction (XRD), and thermogravimetric analysis (TGA). Co-MCM-4 exhibited the highest GAT removal rate of 0.0059 min-1. The removal rate was further enhanced under optimized conditions, including a catalyst loading of 0.25 g L-1 (0.0127 min-1), PMS dosage of 0.90 g L-1 (0.0207 min-1), and initial pH of 9 (0.0265 min-1). Co-MCM-4 demonstrated good reusability, maintaining >60% GAT removal efficiency even after four consecutive catalytic cycles. Scavenging experiments proved that both SO4 •− and OH play a crucial role in removing GAT efficiently. In short, waste-derived Co-doped MCM-41 demonstrated efficient activation of PMS, indicating significant potential for the sustainable removal of antibiotics. Future studies should explore the co-doping of metal and heteroatom to explore the possible promoted removal efficiency from metal-heteroatom bonding sites.

Keywords: Co-doped MCM-41; gatifloxacin; peroxymonosulfate activation; radical pathway; rice husk

 

REFERENCES

Abbas, S.H., Adam, F. & Muniandy, L. 2020. Green synthesis of MCM-41 from rice husk and its functionalization with nickel(II) salen complex for the rapid catalytic oxidation of benzyl alcohol. Microporous and Mesoporous Materials 305: 110192.

Adam, F. & Batagarawa, M.S. 2013. Tetramethylguanidine–silica nanoparticles as an efficient and reusable catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide and propylene oxide. Applied Catalysis A: General 454: 164-171.

Afzal, S., Pan, K., Duan, D., Wei, Y. & Chen, L. 2021. Heterogeneous activation of peroxymonosulfate with cobalt incorporated fibrous silica nanospheres for the degradation of organic pollutants in water. Applied Surface Science 542: 148674.

Albayati, T.M., Alwan, G.M. & Mahdy, O.S. 2017. High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipient wetness impregnation method. Korean Journal of Chemical Engineering 34(1): 259-265.

Bai, L., Wyrwalski, F., Lamonier, J.F., Khodakov, A.Y., Monflier, E. & Ponchel, A. 2013. Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde. Applied Catalysis B: Environmental 138-139: 381-390.

Belles, L., Moularas, C., Smykała, S. & Deligiannakis, Y. 2021. Flame spray pyrolysis Co3O4/CoO as highly-efficient nanocatalyst for oxygen reduction reaction. Nanomaterials 11(4): 925.

Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y. & Guo, Y. 2011. Application studies of activated carbon derived from rice husks produced by chemical-thermal process-A review. Advances in Colloid and Interface Science 163(1): 39-52.

Chin, Y.T., Manickavasagam, G., Lim, X.X., Khoerunnisa, F. & Oh, W.D. 2025. Cobalt-nitrogen co-doped carbon nanotubes derived from biomass and plastic wastes as peroxymonosulfate activator for tetracycline removal. Journal of Water Process Engineering 72: 107635.

Choong, Z.Y., Subramaniam, N., Gasim, M.F., Mohamed Iqbal, M.A., He, C., Lin, K.Y.A. & Oh, W.D. 2024. Waste-derived MCM-41 as dual-functional support for cobalt ferrite: Performance as peroxymonosulfate activator for ciprofloxacin decontamination. Applied Surface Science 645: 158861.

Di, J., Jamakanga, R., Chen, Q., Li, J., Gai, X., Li, Y., Yang, R. & Ma, Q. 2021. Degradation of Rhodamine B by activation of peroxymonosulfate using Co3O4-rice husk ash composites. Science of The Total Environment 784: 147258.

Ghadermazi, M., Molaei, S. & Khorami, S. 2023. Synthesis, characterization and catalytic activity of copper deposited on MCM-41 in the synthesis of 5-substituted 1H-tetrazoles. Journal of Porous Materials 30(3): 949-963.

Gupta, S., Fernandes, R., Patel, R., Spreitzer, M. & Patel, N. 2023. A review of cobalt-based catalysts for sustainable energy and environmental applications. Applied Catalysis A: General 661: 119254.

Huang, X., Li, G., Liu, L., He, Y., Su, X., Pan, Y., Xing, W., Wu, G. & Zhang, M. 2025. Boosting peroxymonosulfate activation over Co-N-C@Co9S8 double-shelled nanocages for ciprofloxacin degradation: Insights into catalytic performance, degradation mechanism and routes. Separation and Purification Technology 359: 130662.

Huong, P.T., Jitae, K., Al Tahtamouni, T.M., Le Minh Tri, N., Kim, H.H., Cho, K.H. & Lee, C. 2020. Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater. Journal of Water Process Engineering 33: 101037.

Kordi, M., Farrokhi, N., Pech-Canul, M.I. & Ahmadikhah, A. 2024. Rice husk at a glance: From agro-industrial to modern applications. Rice Science 31(1): 14-32.

Kumar Das, S., Adediran, A., Rodrigue Kaze, C., Mohammed Mustakim, S. & Leklou, N. 2022. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Construction and Building Materials 345: 128341.

Liu, T., Li, C.X., Chen, X., Chen, Y., Cui, K. & Wei, Q. 2024a. Peroxymonosulfate activation by rice-husk-derived biochar (RBC) for the degradation of sulfamethoxazole: The key role of hydroxyl groups. International Journal of Molecular Sciences 25(21): 11582.

Liu, T., Li, C.X., Chen, X., Chen, Y., Cui, K. & Wei, Q. 2024b. Magnetic MgFeO@BC derived from rice husk as peroxymonosulfate activator for sulfamethoxazole degradation: Performance and reaction mechanism. International Journal of Molecular Sciences 25(21): 11768.

Lu, C.S., Tsai, H.Y., Shaya, J., Golovko, V.B., Wang, S.Y., Liu, W.J. & Chen, C.C. 2022. Degradation of sulfamethoxazole in water by AgNbO 3 photocatalyst mediated by persulfate. RSC Advances 12(46): 29709-29718.

Luo, J., Gao, Y., Song, T. & Chen, Y. 2021. Activation of peroxymonosulfate by biochar and biochar-based materials for degrading refractory organics in water: a review. Water Science and Technology 83(10): 2327-2344.

Manickavasagam, G., He, C., Zhou, T., Hamidon, T.S., Hussin, M.H.H., Saaid, M. & Oh, W.D. 2025. Stimulating the catalytic activity of chars for norfloxacin removal through surface functionalization with nitrogen and manganese: The combined role of dopants. Separation and Purification Technology 369: 133161.

Manickavasagam, G., He, C., Zhou, T., Lin, K.Y.A., Hamidon, T.S., Hussin, M.H., Saaid, M. & Oh, W.D. 2024. Insights into the sustainable design of engineered hydrochar co-doped with cobalt and nitrogen as peroxymonosulfate activator for fluoroquinolones removal. Chemical Engineering Journal 502: 157976.

Maran, M.A., Zheng, A.L.T., Tan, H.Y., Sarbini, S.R., Tan, K.B., Boonyuen, S., Wong, K.K.S., Chung, E.L.T., Lease, J. & Andou, Y. 2025. Assessing the photocatalytic performance of hydrothermally synthesized Fe-doped BiVO4 under low-intensity UV irradiation. Arabian Journal for Science and Engineeringhttps://doi.org/10.1007/s13369-025-10278-8

Mofijur, M., Mahlia, T.M.I., Logeswaran, J., Anwar, M., Silitonga, A.S., Rahman, S.M.A. & Shamsuddin, A.H. 2019. Potential of rice industry biomass as a renewable energy source. Energies 12(21): 4116.

Ng, W.Y., Choong, Z.Y., Gasim, M.F., Khoerunnisa, F., Lin, K.Y.A. & Oh, W.D. 2022. Insights into the performance and kinetics of face mask-derived nitrogen-doped porous carbon as peroxymonosulfate activator for gatifloxacin removal. Journal of Water Process Engineering 50: 103239.

Nhavene, E.P.F., Andrade, G.F., Faria, J.A.Q.A., Gomes, D.A. & de Sousa, E.M.B. 2018. Biodegradable polymers grafted onto multifunctional mesoporous silica nanoparticles for gene delivery. ChemEngineering 2(2): 24.

Nzereogu, P.U., Omah, A.D., Ezema, F.I., Iwuoha, E.I. & Nwanya, A.C. 2023. Silica extraction from rice husk: Comprehensive review and applications. Hybrid Advances 4: 100111.

Olmez-Hanci, T. & Arslan-Alaton, I. 2013. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal 224: 10-16.

Panawong, C., Chatsri, A., Nachaichot, A., Nanmong, T., Loiha, S., Pornsuwan, S., Nijpanich, S., Mukdasai, S. & Budsombat, S. 2024. Rice husk-derived cobalt silica as effective peroxymonosulfate activator for degradation of organic pollutants. Journal of Molecular Liquids 407: 125230.

Peng, W., Cai, L., Lu, Y. & Zhang, Y. 2023. Preparation of Mn-Co-MCM-41 molecular sieve with thermosensitive template and its degradation performance for rhodamine B. Catalysts 13(6): 991.

Pradhan, A.C. & Parida, K.M. 2012. Facile synthesis of mesoporous composite Fe/Al2O3–MCM-41: An efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes. Journal of Materials Chemistry 22(15): 7567.

Rahman, M.M., McGuigan, S., Li, S., Gao, L., Hou, D., Yang, Z., Xu, Z., Lee, S.J., Sun, C.J., Liu, J., Huang, X., Xiao, X., Chu, Y., Sainio, S., Nordlund, D., Kong, X., Liu, Y. & Lin, F. 2021. Chemical modulation of local transition metal environment enables reversible oxygen redox in Mn-based layered cathodes. ACS Energy Letters 6(8): 2882-2890.

Sang, W., Li, Z., Huang, M., Wu, X., Li, D., Mei, L. & Cui, J. 2020. Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole. Chemical Engineering Journal 383: 123057.

Shao, P., Yin, X., Yu, C., Han, S., Zhao, B., Li, K., Li, X., Yang, Z., Yuan, Z., Shi, Q., Ren, J., Hu, H., Cui, K., Li, T. & Jiang, J. 2023. Enhanced activation of peroxymonosulfate via sulfate radicals and singlet oxygen by SrCoxMn1−xO3 perovskites for the degradation of Rhodamine B. Processes 11(4): 1279.

Sun, X., Xu, D., Dai, P., Liu, X., Tan, F. & Guo, Q. 2020. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal 402: 125881.

Wu, D. & Li, X. 2023. Heterogeneous activation of peroxymonosulfate by recyclable magnetic CuO/Fe3O4 nanosheets for efficient degradation of organic pollutants. Arabian Journal of Chemistry 16(11): 105285.

Xie, K., Han, R., Sun, P., Wang, H., Fang, Y., Zhai, Z., Ma, D. & Liu, H. 2021. Rice husk biochar modified-CuCo 2O4 as an efficient peroxymonosulfate activator for non-radical degradation of organic pollutants from aqueous environment. RSC Advances 11(62): 39467-39475.

Xu, L., Fu, B., Sun, Y., Jin, P., Bai, X., Jin, X., Shi, X., Wang, Y. & Nie, S. 2020. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application. Chemical Engineering Journal 400: 125870.

Yang, B., Dai, J., Zhao, Y., Wu, J., Ji, C. & Zhang, Y. 2022a. Advances in preparation, application in contaminant removal, and environmental risks of biochar-based catalysts: A review. Biochar 4(1): 51.

Yang, S., Hu, X., You, X., Zhang, W., Liu, Y. & Liang, W. 2022b. Removal of ammonia using persulfate during the nitrate electro-reduction process. International Journal of Environmental Research and Public Health 19(6): 3270.

Yang, Y., Kao, L.C., Liu, Y., Sun, K., Yu, H., Guo, J., Liou, S.Y.H. & Hoffmann, M.R. 2018. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catalysis 8(5): 4278-4287.

Zhu, Z., Yang, X., Ye, X., Li, Q., Wang, J., Wu, L., Huang, Z.H. & Wang, M.X. 2024. Activating peroxymonosulfate by high nitrogen-doped biochar from lotus pollen for efficient degradation of organic pollutants from water: Performance, kinetics and mechanism investigation. Separation and Purification Technology 346: 127456.

 

*Corresponding author; email: ohwenda@usm.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next