Sains Malaysiana
54(12)(2025): 2873-2886
http://doi.org/10.17576/jsm-2025-5412-06
Pengaktifan Peroksimonosulfat secara Heterogen oleh MCM-41 Terdop
Kobalt untuk Penyingkiran Fluorokuinolon
(Heterogeneous Activation of Peroxymonosulfate by Cobalt-Doped
MCM-41 for Removal of Fluoroquinolones)
GANAPATY
MANICKAVASAGAM, NURSYAZLIN SUDA & WEN-DA OH*
Pusat Pengajian Sains
Kimia, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
Received: 24 July 2025/Accepted: 11
December 2025
Abstrak
Abu sekam
padi yang terhasil daripada sekam padi lazimnya mempunyai ketumpatan pukal yang
rendah serta menimbulkan cabaran dari segi alam sekitar dan kesihatan manusia,
khususnya disebabkan kesukaran untuk dilupuskan dengan selamat. Kandungan
silika amorfus yang tinggi dalam abu ini menjadikannya bahan yang sangat sesuai
untuk pelbagai kegunaan dalam bidang perindustrian seperti komposit polimer,
pembuatan kaca, seramik dan cat serta dalam teknologi moden seperti sistem
penghantaran ubat, penjerapan karbon dan penyimpanan tenaga. Dalam penyelidikan
ini, bahan berstruktur mesopori yang dikenali sebagai Mobil Composition of
Matter No. 41 (MCM-41) telah disintesis dengan menggunakan sekam padi
sebagai sumber utama silika untuk pengaktifan peroksimonosulfat (PMS) bagi
penyingkiran gatifloksasin (GAT). Seterusnya, pendopan Co dalam struktur MCM-41
dilaksanakan melalui gabungan kaedah impregnasi dan kalsinasi. Pemangkin yang
dihasilkan (MCM, Co-MCM-1, Co-MCM-2 dan Co-MCM-4) telah dikaji cirinya
menggunakan mikroskopi elektron pengimbasan-pancaran resolusi tinggi (FESEM),
transformasi Fourier inframerah spektroskopi (FTIR), difraktometer sinar-X
(XRD) dan gravimetri terma (TGA). Kajian mendapati Co-MCM-4 menunjukkan
keberkesanan tertinggi dalam penyingkiran GAT dengan kadar 0.0059 min-1.
Kecekapan penyingkiran ini meningkat pada keadaan optimum, iaitu pemuatan
pemangkin sebanyak 0.25 g L-1 (0.0127 min-1), dos PMS
sebanyak 0.90 g L-1 (0.0207 min-1), dan nilai pH 9
(0.0265 min-1). Selain itu, Co-MCM-4 turut menunjukkan keupayaan
guna semula yang baik dengan kecekapan penyingkiran GAT melebihi 60% selepas
empat kitaran. Ujian perencat radikal menunjukkan SO4
•−
dan •OH berperanan secara langsung dalam proses
penyingkiran GAT. Secara keseluruhannya, kajian ini membuktikan potensi tinggi
Co-MCM-4 yang dihasilkan daripada bahan buangan untuk digunakan sebagai
pemangkin dalam pengaktifan PMS dan penyingkiran antibiotik secara mampan.
Kata kunci: Gatifloksasin; laluan radikal; MCM-41 terdop Co;
pengaktifan peroksimonosulfat; sekam padi
Abstract
Rice husk is an abundant agricultural by-product in major
rice-producing countries. The resulting rice husk ash is characterized by low
bulk density, presenting significant environmental and health concerns due to
challenges associated with its disposal. The high content of amorphous silica
in rice husk ash renders it a highly suitable material for a wide range of
industrial applications (e.g., polymer composites, glassmaking, ceramics,
paints) and emerging technological fields (e.g., drug delivery systems, carbon
capture, and energy storage). In this study, Mobil Composition of Matter No. 41
(MCM-41) was synthesized from rice husk as a silica source and Co doping was
achieved through a combination of impregnation and subsequent calcination
techniques to activate peroxymonosulfate (PMS) for gatifloxacin (GAT) removal.
The resultant catalysts (MCM, Co-MCM-1, Co-MCM-2, and Co-MCM-4) were
characterized using a field emission scanning electron microscope (FESEM),
Fourier transform infrared (FTIR), X-ray Diffraction (XRD), and
thermogravimetric analysis (TGA). Co-MCM-4 exhibited the highest GAT removal
rate of 0.0059 min-1. The removal rate was further enhanced under
optimized conditions, including a catalyst loading of 0.25 g L-1 (0.0127
min-1), PMS dosage of 0.90 g L-1 (0.0207 min-1),
and initial pH of 9 (0.0265 min-1). Co-MCM-4 demonstrated good
reusability, maintaining >60% GAT removal efficiency even after four
consecutive catalytic cycles. Scavenging experiments proved that both SO4
•−
and •OH
play a crucial role in removing GAT efficiently. In short, waste-derived
Co-doped MCM-41 demonstrated efficient activation of PMS, indicating
significant potential for the sustainable removal of antibiotics. Future
studies should explore the co-doping of metal and heteroatom to explore the
possible promoted removal efficiency from metal-heteroatom bonding sites.
Keywords: Co-doped MCM-41; gatifloxacin; peroxymonosulfate
activation; radical pathway; rice husk
REFERENCES
Abbas, S.H., Adam, F. &
Muniandy, L. 2020. Green synthesis of MCM-41 from rice husk and its
functionalization with nickel(II) salen complex for the rapid catalytic
oxidation of benzyl alcohol. Microporous and Mesoporous Materials 305:
110192.
Adam, F. & Batagarawa, M.S.
2013. Tetramethylguanidine–silica nanoparticles as an efficient and reusable
catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide
and propylene oxide. Applied Catalysis A: General 454: 164-171.
Afzal, S., Pan, K., Duan, D., Wei,
Y. & Chen, L. 2021. Heterogeneous activation of peroxymonosulfate with
cobalt incorporated fibrous silica nanospheres for the degradation of organic
pollutants in water. Applied Surface Science 542: 148674.
Albayati, T.M., Alwan, G.M. &
Mahdy, O.S. 2017. High performance methyl orange capture on magnetic nanoporous
MCM-41 prepared by incipient wetness impregnation method. Korean Journal of
Chemical Engineering 34(1): 259-265.
Bai, L., Wyrwalski, F., Lamonier,
J.F., Khodakov, A.Y., Monflier, E. & Ponchel, A. 2013. Effects of
β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts:
From molecule-ion associations to complete oxidation of formaldehyde. Applied
Catalysis B: Environmental 138-139: 381-390.
Belles, L., Moularas, C.,
Smykała, S. & Deligiannakis, Y. 2021. Flame spray pyrolysis Co3O4/CoO
as highly-efficient nanocatalyst for oxygen reduction reaction. Nanomaterials 11(4): 925.
Chen, Y., Zhu, Y., Wang, Z., Li, Y.,
Wang, L., Ding, L., Gao, X., Ma, Y. & Guo, Y. 2011. Application studies of
activated carbon derived from rice husks produced by chemical-thermal process-A
review. Advances in Colloid and Interface Science 163(1): 39-52.
Chin, Y.T., Manickavasagam, G., Lim,
X.X., Khoerunnisa, F. & Oh, W.D. 2025. Cobalt-nitrogen co-doped carbon
nanotubes derived from biomass and plastic wastes as peroxymonosulfate
activator for tetracycline removal. Journal of Water Process Engineering 72: 107635.
Choong, Z.Y., Subramaniam, N.,
Gasim, M.F., Mohamed Iqbal, M.A., He, C., Lin, K.Y.A. & Oh, W.D. 2024.
Waste-derived MCM-41 as dual-functional support for cobalt ferrite: Performance
as peroxymonosulfate activator for ciprofloxacin decontamination. Applied
Surface Science 645: 158861.
Di, J., Jamakanga, R., Chen, Q., Li,
J., Gai, X., Li, Y., Yang, R. & Ma, Q. 2021. Degradation of Rhodamine B by
activation of peroxymonosulfate using Co3O4-rice husk ash
composites. Science of The Total Environment 784: 147258.
Ghadermazi, M., Molaei, S. &
Khorami, S. 2023. Synthesis, characterization and catalytic activity of copper
deposited on MCM-41 in the synthesis of 5-substituted 1H-tetrazoles. Journal
of Porous Materials 30(3): 949-963.
Gupta, S., Fernandes, R., Patel, R.,
Spreitzer, M. & Patel, N. 2023. A review of cobalt-based catalysts for
sustainable energy and environmental applications. Applied Catalysis A:
General 661: 119254.
Huang, X., Li, G., Liu, L., He, Y.,
Su, X., Pan, Y., Xing, W., Wu, G. & Zhang, M. 2025. Boosting
peroxymonosulfate activation over Co-N-C@Co9S8 double-shelled nanocages for
ciprofloxacin degradation: Insights into catalytic performance, degradation
mechanism and routes. Separation and Purification Technology 359:
130662.
Huong, P.T., Jitae, K., Al
Tahtamouni, T.M., Le Minh Tri, N., Kim, H.H., Cho, K.H. & Lee, C. 2020.
Novel activation of peroxymonosulfate by biochar derived from rice husk toward
oxidation of organic contaminants in wastewater. Journal of Water Process
Engineering 33: 101037.
Kordi, M., Farrokhi, N., Pech-Canul,
M.I. & Ahmadikhah, A. 2024. Rice husk at a glance: From agro-industrial to
modern applications. Rice Science 31(1): 14-32.
Kumar Das, S., Adediran, A.,
Rodrigue Kaze, C., Mohammed Mustakim, S. & Leklou, N. 2022. Production,
characteristics, and utilization of rice husk ash in alkali activated
materials: An overview of fresh and hardened state properties. Construction
and Building Materials 345: 128341.
Liu, T., Li, C.X., Chen, X., Chen,
Y., Cui, K. & Wei, Q. 2024a. Peroxymonosulfate activation by rice-husk-derived
biochar (RBC) for the degradation of sulfamethoxazole: The key role of hydroxyl
groups. International Journal of Molecular Sciences 25(21): 11582.
Liu, T., Li, C.X., Chen, X., Chen,
Y., Cui, K. & Wei, Q. 2024b. Magnetic MgFeO@BC derived from rice husk as
peroxymonosulfate activator for sulfamethoxazole degradation: Performance and reaction
mechanism. International Journal of Molecular Sciences 25(21): 11768.
Lu, C.S., Tsai, H.Y., Shaya, J.,
Golovko, V.B., Wang, S.Y., Liu, W.J. & Chen, C.C. 2022. Degradation of
sulfamethoxazole in water by AgNbO 3 photocatalyst mediated by persulfate. RSC
Advances 12(46): 29709-29718.
Luo, J., Gao, Y., Song, T. &
Chen, Y. 2021. Activation of peroxymonosulfate by biochar and biochar-based
materials for degrading refractory organics in water: a review. Water
Science and Technology 83(10): 2327-2344.
Manickavasagam, G., He, C., Zhou,
T., Hamidon, T.S., Hussin, M.H.H., Saaid, M. & Oh, W.D. 2025. Stimulating
the catalytic activity of chars for norfloxacin removal through surface
functionalization with nitrogen and manganese: The combined role of dopants. Separation
and Purification Technology 369: 133161.
Manickavasagam, G., He, C., Zhou,
T., Lin, K.Y.A., Hamidon, T.S., Hussin, M.H., Saaid, M. & Oh, W.D. 2024.
Insights into the sustainable design of engineered hydrochar co-doped with
cobalt and nitrogen as peroxymonosulfate activator for fluoroquinolones
removal. Chemical Engineering Journal 502: 157976.
Maran, M.A., Zheng, A.L.T., Tan,
H.Y., Sarbini, S.R., Tan, K.B., Boonyuen, S., Wong, K.K.S., Chung, E.L.T.,
Lease, J. & Andou, Y. 2025. Assessing the photocatalytic performance of
hydrothermally synthesized Fe-doped BiVO4 under low-intensity UV irradiation. Arabian Journal for Science and Engineeringhttps://doi.org/10.1007/s13369-025-10278-8
Mofijur, M., Mahlia, T.M.I.,
Logeswaran, J., Anwar, M., Silitonga, A.S., Rahman, S.M.A. & Shamsuddin,
A.H. 2019. Potential of rice industry biomass as a renewable energy source. Energies 12(21): 4116.
Ng, W.Y., Choong, Z.Y., Gasim, M.F.,
Khoerunnisa, F., Lin, K.Y.A. & Oh, W.D. 2022. Insights into the performance
and kinetics of face mask-derived nitrogen-doped porous carbon as
peroxymonosulfate activator for gatifloxacin removal. Journal of Water
Process Engineering 50: 103239.
Nhavene, E.P.F., Andrade, G.F.,
Faria, J.A.Q.A., Gomes, D.A. & de Sousa, E.M.B. 2018. Biodegradable polymers
grafted onto multifunctional mesoporous silica nanoparticles for gene delivery. ChemEngineering 2(2): 24.
Nzereogu, P.U., Omah, A.D., Ezema,
F.I., Iwuoha, E.I. & Nwanya, A.C. 2023. Silica extraction from rice husk:
Comprehensive review and applications. Hybrid Advances 4: 100111.
Olmez-Hanci, T. & Arslan-Alaton,
I. 2013. Comparison of sulfate and hydroxyl radical based advanced oxidation of
phenol. Chemical Engineering Journal 224: 10-16.
Panawong, C., Chatsri, A.,
Nachaichot, A., Nanmong, T., Loiha, S., Pornsuwan, S., Nijpanich, S., Mukdasai,
S. & Budsombat, S. 2024. Rice husk-derived cobalt silica as effective
peroxymonosulfate activator for degradation of organic pollutants. Journal
of Molecular Liquids 407: 125230.
Peng, W., Cai, L., Lu, Y. &
Zhang, Y. 2023. Preparation of Mn-Co-MCM-41 molecular sieve with
thermosensitive template and its degradation performance for rhodamine B. Catalysts 13(6): 991.
Pradhan, A.C. & Parida, K.M.
2012. Facile synthesis of mesoporous composite Fe/Al2O3–MCM-41:
An efficient adsorbent/catalyst for swift removal of methylene blue and mixed
dyes. Journal of Materials Chemistry 22(15): 7567.
Rahman, M.M., McGuigan, S., Li, S.,
Gao, L., Hou, D., Yang, Z., Xu, Z., Lee, S.J., Sun, C.J., Liu, J., Huang, X.,
Xiao, X., Chu, Y., Sainio, S., Nordlund, D., Kong, X., Liu, Y. & Lin, F.
2021. Chemical modulation of local transition metal environment enables
reversible oxygen redox in Mn-based layered cathodes. ACS Energy Letters 6(8): 2882-2890.
Sang, W., Li, Z., Huang, M., Wu, X.,
Li, D., Mei, L. & Cui, J. 2020. Enhanced transition metal oxide based
peroxymonosulfate activation by hydroxylamine for the degradation of
sulfamethoxazole. Chemical Engineering Journal 383: 123057.
Shao, P., Yin, X., Yu, C., Han, S., Zhao, B.,
Li, K., Li, X., Yang, Z., Yuan, Z., Shi, Q., Ren, J., Hu, H., Cui, K., Li, T.
& Jiang, J. 2023. Enhanced activation of peroxymonosulfate via sulfate
radicals and singlet oxygen by SrCoxMn1−xO3 perovskites for the degradation of Rhodamine B. Processes 11(4): 1279.
Sun, X., Xu, D., Dai, P., Liu, X.,
Tan, F. & Guo, Q. 2020. Efficient degradation of methyl orange in water via
both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate
activator. Chemical Engineering Journal 402: 125881.
Wu, D. & Li, X. 2023.
Heterogeneous activation of peroxymonosulfate by recyclable magnetic CuO/Fe3O4 nanosheets for efficient degradation of organic pollutants. Arabian Journal
of Chemistry 16(11): 105285.
Xie, K., Han, R., Sun, P., Wang, H.,
Fang, Y., Zhai, Z., Ma, D. & Liu, H. 2021. Rice husk biochar modified-CuCo 2O4 as an efficient peroxymonosulfate activator for non-radical degradation of
organic pollutants from aqueous environment. RSC Advances 11(62): 39467-39475.
Xu, L., Fu, B., Sun, Y., Jin, P.,
Bai, X., Jin, X., Shi, X., Wang, Y. & Nie, S. 2020. Degradation of organic
pollutants by Fe/N co-doped biochar via peroxymonosulfate activation:
Synthesis, performance, mechanism and its potential for practical application. Chemical
Engineering Journal 400: 125870.
Yang, B., Dai, J., Zhao, Y., Wu, J.,
Ji, C. & Zhang, Y. 2022a. Advances in preparation, application in
contaminant removal, and environmental risks of biochar-based catalysts: A review. Biochar 4(1): 51.
Yang, S., Hu, X., You, X., Zhang,
W., Liu, Y. & Liang, W. 2022b. Removal of ammonia using persulfate during
the nitrate electro-reduction process. International Journal of
Environmental Research and Public Health 19(6): 3270.
Yang, Y., Kao, L.C., Liu, Y., Sun,
K., Yu, H., Guo, J., Liou, S.Y.H. & Hoffmann, M.R. 2018. Cobalt-doped black
TiO2 nanotube array as a stable anode for oxygen evolution and
electrochemical wastewater treatment. ACS Catalysis 8(5): 4278-4287.
Zhu, Z., Yang, X., Ye, X., Li, Q.,
Wang, J., Wu, L., Huang, Z.H. & Wang, M.X. 2024. Activating
peroxymonosulfate by high nitrogen-doped biochar from lotus pollen for
efficient degradation of organic pollutants from water: Performance, kinetics
and mechanism investigation. Separation and Purification Technology 346:
127456.
*Corresponding
author; email: ohwenda@usm.my